QUESTION 20

In adult Philadelphia-chromosome-positive chronic myeloid leukaemia (in chronic phase), treatment with which of the following agents is associated with the greatest likelihood of achieving a complete cytogenetic response?

A. Hydroxyurea
B. Radioactive phosphorus
C. Interferon
D. Cytosine arabinoside
E. Imatinib

MYELOPROLIFERATIVE DISORDERS

- Heterogeneous group of disorders characterised by cellular proliferation of one or more haematological cell lines in the peripheral blood, distinct from acute leukaemia
 - Consists of 4 diseases:
 o CML
 o Polycythaemia rubra vera
 o Essential thrombocytosis
 o Myelofibrosis
- Clonal origin
- Common attribute is acquired activating mutation of gene coding for tyrosine kinases
- In CML, tyrosine kinase activity of bcr-abl hybrid gene is increased
- In PRV, ET and MF mutations occur in JAK2 gene

CML

- Increased proliferation of granulocytic cell line without loss of capacity to differentiate
- Peripheral blood shows increased number of granulocytes and their immature precursors including occasional blast cells

Pathophysiology

- Characterised by cytogenetic aberration \(\rightarrow \) reciprocal translocation between long arms of chm 22 and 9 t(9,22)
- Results in shortening of chm 22 = Philadelphia chromosome
- This translocation relocates an oncogene (abl) from long arm of chm 9 to long arm of chm 22 in BCR region
- Resulting bcr-abl fusion gene encodes protein with strong tyrosine kinase activity
- Autophosphorylation and constitutive activation of tyrosine kinase

Epidemiology

- Typically affects middle aged (40s to 50s)
- M>F
Phases of Disease

1) Chronic Phase (3-5yrs)
 a. Splenomegaly
 b. Leukocytosis
 c. Few symptoms
 d. Easily controlled with medications

2) Accelerated Phase
 a. Occurs few months before blast crisis
 b. Survival 1 to 1.5 yrs
 c. Counts more difficult to control with medications
 d. Diagnosis with one or more of:
 i. Blast cells (10 to 19% of peripheral WBCs or nucleated BM cells)
 ii. Peripheral basophils (>20%)
 iii. persistent thrombocytopenia (<100) or thrombocytosis (>1000)
 iv. Increasing splenomegaly or leukocytosis unresponsive to Rx
 v. Cytogenetic evidence of clonal evolution

3) Blast Crisis
 a. Similar to acute leukaemia
 b. Survival 3-6 months
 c. Marked increase in BM or peripheral blast count (>20%)
 d. Large foci or clusters of blasts in BMBx
 e. Maybe soft tissue/skin leukaemic infiltrates, extramedullary blast proliferation
 f. Symptoms due to anaemia, thrombocytopenia, basophilia, rapidly enlarging spleen
 g. Failure of medications to control leukocytosis and splenomegaly
 h. 2/3 – myeloid blasts, 1/3 – lymphoid blasts
 i. Usually further chromosomal abnormalities found at this time

Clinical Manifestations

- Insidious
- Often asymptomatic at diagnosis
- Enlarged spleen +/- liver
- Fatigue, weight loss, low grade fever, night sweats \rightarrow hypermetabolic symptoms
- Hyperviscosity \rightarrow visual disturbances
- Gout

Pathology

- WCC 20-60, predominantly neutrophils
- Neutrophils have decreased apoptosis \rightarrow long-lived cells \rightarrow reduced enzymes/granules \rightarrow low score on leukocyte alkaline phosphatase staining
- Mild basophilia and eosinophilia is common
- Early myeloid cells (eg: myeloblasts, myelocytes, metamyelocytes) and nucleated RBCs in peripheral blood and in BM – this differentiates CML from AML in which there is a “leukaemic gap”
- Mild to moderate anaemia usually normochromic, normocytic
- Platelets can be low, normal or sometimes increased
- Increased urate

Bone Marrow

- Hypercellular
- Expansion of myeloid line (neutrophils, eosinophils, basophils)
- Megakaryocytes prominent
- Mild fibrosis in reticulin stain
- Philadelphia chromosome (also often seen in peripheral blood)
- Additional chromosomal abnormalities may be found as patients enter blast crisis phase

Treatment

- Aims of treatment:
 - Haematological remission (normalisation of peripheral blood counts, no immature cells, no clinical signs of disease)
 - Cytogenetic remission (complete = no Ph+ cells; partial = 1-35% Ph+ cells; minor = 35-95% Ph+ cells)
 - Molecular remission (no brc-abl TK)
- Imatinib (Gleevec) competitively binds to ATP receptor of BCR-ABL TK → inhibits TK activity in cells with brc-abl → inhibits proliferation and induces apoptosis
- Side effects = oedema, muscle cramps, nausea, diarrhoea, abnormal LFTs, rash (porphyria)
- Degree of suppression of BCR-ABL TK predicts freedom from progression
- Other TK inhibitors are dasatinib and nilotinib
- Imatinib resistance can occur by 3 mechanisms:
 - Amplification and over expression of BCR-ABL
 - Mutations of BCR-ABL kinase domain
 - Drug influx-efflux-OCT-1 expression
- If resistance occurs can increase dose (variable response) or change to other TK inhibitor
- Other treatment options include hydroxyurea (haematological remission but cytogenetic/molecular remission rare), IFN and BM transplant

Prognosis

- Much better since imatinib became available ?estimated life expectancy
- Poorer prognosis associated with advanced age, more blasts, more basophils, larger spleen, more eosinophils and low platelets

Answer: E